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Over the last five decades, progress in neural recording 
techniques has allowed the number of simultaneously recorded 
neurons to double approximately every 7 years, mimicking 
Moore’s law. Such exponential growth motivates us to ask 
how data analysis techniques are affected by progressively 
larger numbers of recorded neurons. Traditionally, neurons are 
analyzed independently on the basis of their tuning to stimuli 
or movement. Although tuning curve approaches are unaffected 
by growing numbers of simultaneously recorded neurons, 
newly developed techniques that analyze interactions between 
neurons become more accurate and more complex as the 
number of recorded neurons increases. Emerging data analysis 
techniques should consider both the computational costs and 
the potential for more accurate models associated with this 
exponential growth of the number of recorded neurons.

Since computers were introduced, their processing speed has grown 
exponentially, doubling approximately every 2 years, as formalized 
by Moore’s law1. This growth means that the time it takes to process 
a given amount of data is halved every 2 years. However, although 
processing speeds grow exponentially, datasets are also growing. For 
data processing to be feasible, it is essential that algorithms scale well 
with the amount of data, and scaling analysis is one of the central tools 
of theoretical computer science2. As neuroscience fundamentally 
aims at understanding the processing of huge numbers of neurons, 
we want to understand how recording and analysis techniques scale. 
Specifically, we examined how the number of simultaneously recorded 
neurons grows over time, what computational challenges this growth 
introduces and how well analysis techniques can take advantage of 
this growth to improve the prediction of neural activity.

Growth in the number of simultaneously recorded neurons
Since the advent of multi-electrode recordings in the 1950s, there has 
been tremendous growth in the number of simultaneously recorded 
single neurons3. With current multiple-electrode technology, signals 
from hundreds of individual neurons can be recorded simultaneously4,5. 
Using an in-depth search of the literature, we identified the studies with 
the highest numbers of simultaneously recorded neurons since the 
development of multi-electrode recording (see Supplementary Table 1 
and Supplementary Methods). We found that, in good approximation, 
the number of recorded neurons has grown exponentially since the 

1950s, doubling every 7 years (Fig. 1a). Although this growth is slower 
than that of computer speeds, it may have important implications for 
methods used to analyze neural data.

Growth in the number of simultaneously recorded neurons has 
been driven by a number of innovations in the production, imple-
mentation and wiring of electrodes (Fig. 1b). For example, initially 
electrodes were made one-by-one, by hand; later, they were made 
by bundling hand-made wires. Recently developed silicon process-
ing techniques allow many electrodes to be fabricated as arrays in a 
fully automated process3. Advances in neural recording techniques 
have also been facilitated by progress in computer hardware, such 
as data transfer speeds and storage capacity. Many innovations have 
jointly driven the exponential growth in neural recordings and many 
of today’s systems would have seemed impossible 30 years ago.

The pace of technological change is easy to underestimate. Soon after 
Moore’s law was formulated it was argued that computer processing speed 
or, more precisely, the number of components that could be placed on an 
integrated circuit would have to plateau in a few years6. Although there 
are certainly physical limits to the density of transistors that can be placed 
in a finite amount of space, computer speeds continue to grow rapidly. 
Similarly, as neuroscientists, it is difficult to imagine neural recordings 
doubling every 7 years. If this exponential growth were to continue, future 
electrophysiologists would be able to record from all of the approximately 
100 billion neurons in the human brain in 220 years.

This prediction, extrapolated from the past 50 years of growth, seems 
absurd given today’s technology. Tissue displacement, for instance, 
may fundamentally limit the density with which electrodes can be 
implanted and bleaching and toxicity may limit the effectiveness of 
many optical techniques. Although experimental tools7, as well as 
improvements in automated spike-sorting techniques8, are beginning 
to lessen the need for human intervention, manual spike sorting may 
also be a substantial bottleneck for large-scale multi-electrode record-
ings. Despite these limitations, whole-brain spike recordings may not 
be beyond the realm of possibility. For example, one might imagine a 
system in which each neuron records spike times onto RNA molecules 
that could then by read-out by sequencing the results, one neuron at a 
time. Just as microchip fabrication technology has evolved drastically 
since the introduction of Moore’s law, progress in neural recording 
technology may allow growth beyond our current expectations.

Advances in neural recording and models of neural coding
Just as Moore’s law has an influence on the design of algorithms 
in computer science, advances in neural recording can and should 
influence the design of techniques for analyzing neural data. Ideally, 
data analysis techniques should be able to leverage larger numbers of 
simultaneously recorded neurons to better understand how the brain 
represents and processes information while avoiding the necessity 
for massive supercomputers. We first asked how the spike prediction 
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accuracy of two commonly used neural data analysis methods scales 
with the number of simultaneously recorded neurons.

Understanding what makes neurons fire is a central question in 
neuroscience and being able to accurately predict neural activity is 
at the heart of many neural data analysis techniques9. These tech-
niques generally ask how information about the external world is 
encoded in the spiking of neurons10. On the other hand, a number 
of applications, such as brain-machine interfaces, aim to use neural 
firing to predict behavior or estimate what stimuli are present in 
the external world. These two issues are together referred to as the 
neural coding problem. We want to understand how neurons encode 
information about the external world and we want to understand 
how neural signals can be decoded to provide information about the 
external world. In most cases, encoding and decoding models are 
tightly linked; leading decoding models are usually based on explicit 
models of encoding11–13.

We focused on models of neural encoding and two general 
approaches to the neural coding problem. Many methods focus on 
describing how neural firing relates to stimuli or the movement pro-
duced by an animal, using tuning curves or receptive fields. For exam-
ple, in motor cortex, the firing of the majority of neurons appears 
to depend sinusoidally on the direction of the animal’s hand move-
ment. A second class of methods focuses on describing how neurons 
interact and influence one another14–20 and assume that each neuron’s 
spiking may influence the spiking probability of other neurons. We 
fitted typical versions of both model classes to multi-electrode data 
recorded from the cortices of awake, behaving (motor task) or anes-
thetized (visual task) monkeys and determined how spike prediction 
accuracy scaled with the number of recorded neurons.

We analyzed datasets of recorded spikes using two models that both 
aim at predicting trial-by-trial spike counts: a tuning curve model that  
makes predictions based on external stimuli and a pair-wise inter
actions model that makes predictions based on the activity of the other  
simultaneously recorded neurons (Fig. 2a). In both models, we assumed 
that spike counts on a given trial were generated by a linear nonlinear 
Poisson model21, where the firing rate is determined either by a tuning 
curve or by coupling with the other recorded neurons. We estimated the 
parameters of these two models using maximum a posteriori estimation 
and assessed the spike prediction accuracy on trials that were not used 
during the estimation (Supplementary Methods). We were particu-
larly interested in how the number of simultaneously recorded neurons 
affects spike prediction accuracy. For the interaction model, we varied 
the ‘network size’ by using a random subsample of the other recorded 
neurons and examined how prediction accuracy varies with the number 
of neurons used in the model.

Spike data from 143 primary and pre-motor cortical neurons were 
recorded while a monkey performed a center-out reaching task22. In 
addition, spike data from 106 primary visual cortical neurons were 
recorded while an anesthetized monkey viewed oriented gratings23. In 
data from motor cortex, we considered sinusoidal tuning to the direction 
of hand movement, while in the data from visual cortex we considered 
tuning to the movement direction of an oriented grating. As the tuning 
curve model describes each neuron independently, spike prediction 
accuracy is constant as a function of the number of recorded neurons. 
For the interaction model, however, it is possible for spike prediction 
accuracy to vary as a function of the number of neurons (Fig. 2b). We 
found that spike prediction accuracy under the interaction model grows 
with the number of recorded neurons in both motor and visual cortex 
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Figure 1  Exponential growth in the number  
of recorded neurons. (a) Examining 56 studies 
published over the last five decades, we found 
that the number of simultaneously recorded 
neurons doubled approximately every 7 years. 
(b) A timeline of recording technologies  
during this period shows the development  
from single-electrode recordings to multi-
electrode arrays and in vivo imaging techniques. 
Images of recording techniques reprinted 
from refs. 40–43 with permission of Elsevier, 
Springer Science + Business Media, and  
Am. Physiol. Soc. Image of Utah array  
reprinted from ref. 42, © 1999 IEEE. Ca2+ 
imaging reprinted from ref. 33, © 2003 Natl. 
Acad. Sci. USA.
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Figure 2  Approaches to neural data analysis and the scaling of spike 
prediction accuracy. (a) There are two main approaches to modeling 
multi-electrode data: mapping tuning properties to describe how neurons 
relate to stimuli or movement and mapping interactions between neurons. 
These techniques aim to predict spiking based on either external variables 
or other neural signals. (b) In data recorded from motor cortex (top) and 
visual cortex (bottom), spike prediction accuracy grows when modeling 
interactions between neurons, but is constant when modeling tuning 
curves. Shaded regions denote ± s.e.m. across neurons. (c) An alternative 
approach is to consider simultaneously recorded neural activity as an 
expression of a latent, low-dimensional state space. These spaces can 
be extracted by first estimating smooth firing rates for each neuron and 
then using a dimensionality reduction technique such as factor analysis. 
Features of these state spaces can then be used to predict reaction times 
or reach targets on a trial-by-trial basis or to describe neural variability. 
Purple and green ellipses represent neural variability at target onset and 
movement onset, respectively.
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(as approximately log N). This result implies that accurately modeling 
interactions between neurons should become more important as the 
number of simultaneously recorded neurons continues to grow over 
time. Models that allow nonlinear interactions between neurons or that 
take into account higher-order interactions such as triplets may allow 
even more rapid growth in spike prediction accuracy, and developing 
such data analysis approaches is an essential topic for future research.

Although modeling larger numbers of neurons can certainly allow for 
more accurate prediction of spikes, the growth in the number of simul-
taneously recorded neurons is not without computational challenges. 
One issue in modeling these large, complex datasets is computer run-
time. Modeling larger numbers of neurons requires more tuning curves 
(linear in the number of neurons) or more pair-wise interactions 
(quadratic in the number of neurons), which increases the computa-
tional complexity of these models. Models of higher-order interactions 
such as triplets require even more parameters. The increases in run-
time associated with increases in the number of parameters are, at 
least partially, offset by increases in computer speed and Moore’s law,  
but it is still essential for the run-time of algorithms to scale well with 
the number of recorded neurons and recording lengths. Improving 
the efficiency of data analysis algorithms and developing hardware to 
accelerate them are currently active areas of research.

A second computational challenge is the curse of dimensionality. As the 
number of free parameters in a model increases, precisely estimating the 
parameters from a finite amount of data becomes more and more difficult. 
Modeling the pair-wise interactions between 100 neurons, for instance, 
requires ~10,000 parameters, and precisely estimating these parameters 
from a few hundred trials becomes difficult. Collecting more data is one 
solution to this problem, but we can also use modeling approaches that 
constrain the number of free parameters. For example, assuming that 
interactions between neurons are weak or rare markedly reduces the 
number of free parameters15,16. Alternatively, we may assume that neural 
activity is inherently low-dimensional and that only a few patterns of inter-
actions exist or that interactions exist only between nearest-neighbors. 
Both of these techniques, regularization and dimensionality reduction, 
are active areas of research in machine learning. Ultimately, knowledge 
from anatomy and other physiological experiments can provide powerful 
constraints, and constraints that are tailored to neural data will be neces-
sary to keep data analysis methods feasible in the face of growing numbers 
of recorded neurons. Although modeling interactions between neurons 
does introduce computational issues, statistical approaches to neural data 
analysis are being developed to address these problems.

Understanding massive neural populations
Understanding the high-dimensional datasets generated by modern 
recording techniques seems outstandingly complicated. After all, 
computational neuroscientists face the problem of condensing these 
massive datasets into simplifying principles about population activ-
ity. Ultimately, data from simultaneously recorded neurons promises 
to yield insight into the structure of the nervous system, hierarchi-
cal and modular information processing, neuronal microcircuits, as 
well as adaptation and learning at the network level. At the moment, 
many of these questions have not yet been formulated in a way that 
would allow data analysis to produce clear and concise answers. It may 
be argued that an important emerging objective of computational 
neuroscience is to find order in rich multi-neuron data.

Modeling the interactions, or functional connections, between neurons 
with multi-electrode recordings is beginning to shed light on the func-
tion and organization of the nervous system. Recent efforts modeling 
interactions between retinal ganglion cells, for instance, have revealed 
strong local neighborhood structure in addition to traditional ON/OFF 

receptive fields15. Similar models applied to cortical data have revealed 
modularity in primary motor cortex and dorsal pre-motor cortex24, as 
well as weak, functional interactions across cortex25. These methods 
have also been used to clarify the role of feedback in the thalamus26, the 
relationship between spikes and local field potentials27, and, on a small 
scale, the effects of spike timing–dependent plasticity28.

Considering interactions between neurons may offer some insight into 
the principles underlying neural activity, but there are also a number of 
recently developed methods that aim at providing simpler models of neural 
activity by assuming that the nervous system is inherently low dimen-
sional29,30 (Fig. 2c). Such state-space methods allow the extraction of a 
small number of factors, much fewer than the number of neurons, which 
can be used to visualize and denoise multi-unit spike train data. Although 
interpreting these low-dimensional factors may present another set of chal-
lenges, these approaches have already led to insights into the activity of 
populations of neurons. Notably, features of the trajectories in state space 
can be correlated with a number of behavioral variables, such as reaction 
times30, and results using a state-space approach have shown that stimulus 
onset reduces neural variability across cortex in a wide range of areas31.

An important aspect of both state-space models and models of 
interactions between neurons is that they do not necessarily require 
modeling how individual neurons represent the external world. 
Although tuning curves and receptive fields have been enormously 
successful as models of neural encoding, they make it easy to over-
look the importance of correlations between neurons and the fact 
that, excepting peripheral neurons, the functional properties of each 
neuron are caused by the inputs it receives from other neurons. By 
attempting to model the interactions and correlated activity of popu-
lations of simultaneously recorded neurons, state-space models and 
functional connectivity models may be able to shed light on how 
networks of neurons represent and process information.

Discussion
We observed that the number of simultaneously recorded single 
neurons has been growing rapidly, doubling approximately every  
7 years. The trend described here predicts that in 15 years physiolo-
gists should be able to record from approximately 1,000 neurons. This 
seems feasible with a range of techniques. First, standard recording 
techniques using micro-wire arrays have been used with up to ~700 
electrodes and recordings using on the order of 1,000 electrodes 
should appear in the near future. Second, population, two-photon 
calcium imaging using neuron-targeted scanning techniques have 
been used to record from hundreds of neurons. Advances in dyes and 
scanning methods, as well as statistical methods for extracting spikes 
from fluorescence signals promise to make this approach feasible for 
thousands of neurons as well32,33. Although prediction is notoriously 
difficult, especially about the future, it seems very likely that a 7-year 
doubling in the number of simultaneously recorded neurons will  
continue over the next couple of decades.

These advances in neural recording are an important consideration 
for emerging data analysis techniques. We examined how growth in 
the number of recorded neurons affects spike prediction accuracy in 
two approaches to neural encoding. The spike prediction accuracy of 
tuning curve models is unaffected by growth in the number of recorded 
neurons, as neurons are treated independently. However, in both pri-
mary visual cortex and motor cortex, modeling interactions between 
neurons allows spike prediction accuracy to scale with the number of 
recorded neurons. It is important to note that the log N scaling that we 
observed likely depends on a number of factors. These data are from 
an incomplete, highly under-sampled set of neurons in cortex. In more 
complete recordings, spike prediction accuracy is expected to saturate 
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as more and more of the relevant inputs are observed18,34. Even in 
cortex, there is evidence to suggest that the strength of correlations 
between neurons depends strongly on the spatial scale23 and that very 
nearby neurons may be relatively independent35. In a given dataset, 
the spatial distribution of the recorded neurons, the strength of the 
interactions and the completeness of the recordings are all important 
considerations for our understanding of how spike prediction accuracy 
scales with the number of recorded neurons.

Advances in neural recording will undoubtedly affect many other 
areas of computational neuroscience. As the number of simultane-
ously recorded neurons grows, models that have traditionally only 
been tested using large-scale neural simulations will be able to access 
large, comparable datasets36,37. Models of network dynamics and 
population coding38,39 will be able to draw from increasingly complete 
neural data. However, making these links will likely require more 
sophisticated tools for statistical inference and data analysis.

Unlike Moore’s law, which is driven by consumer demand, advances in 
neural recording are ultimately driven by scientific questions. Functional 
connectivity methods that describe the interactions between neurons 
have the potential to provide increasingly accurate spike prediction 
as the number of simultaneously recorded neurons grows. However, 
understanding the activity of large populations of neurons will require 
even better data analysis tools and computational techniques that allow 
simplifying conclusions to be drawn from complex, high-dimensional 
data. Exponential growth in the number of simultaneously recorded 
neurons introduces additional computational challenges both in terms 
of computer run-time and the dimensionality of models. However, new 
models can also leverage this growth to improve prediction accuracy 
and better understand the representation and processing of information 
in populations of interacting neurons. The trends described here suggest 
that advances in neural recording should be a standard consideration 
when designing these new data analysis methods. Techniques such as 
regularization and dimensionality reduction that are explicitly aimed 
at improving scaling behavior and are tailored to neural data will be 
important tools for understanding growing neural datasets.

Note: Supplementary information is available on the Nature Neuroscience website.
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